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Abstract PG-1 adopts a dimeric structure in dod-

ecylphosphocholine (DPC) micelles, and a channel is

formed by the association of several dimers but the

molecular mechanisms of the membrane damage by non-a-

helical peptides are still unknown. The formation of the

PG-1 dimer is important for pore formation in the lipid

bilayer, since the dimer can be regarded as the primary unit

for assembly into the ordered aggregates. It was supposed

that only 12 residues (RGGRL-CYCRR-RFCVC-V) are

needed to endow protegrin molecules with strong anti-

bacterial activity and that at least four additional residues

are needed to add potent antifungal properties. Thus, the

16-residue protegrin (PG-2) represents the minimal struc-

ture needed for broad-spectrum antimicrobial activity

encompassing bacteria and fungi. As the peptide confor-

mation and peptide-to-membrane binding properties are

very sensitive to single amino acid substitutions, the

solution structure of PG-2 in solution and in a membrane

mimicking environment are crucial. In order to find evi-

dence if the oligomerization state of PG-1 in a lipid envi-

ronment will be the same or not for another protegrins, we

investigate in the present work the PG-2 NMR solution

structure in the presence of perdeuterated DPC micelles.

The NMR study reported in the present work indicates that

PG-2 form a well-defined structure (PDB: 2MUH) com-

posed of a two-stranded antiparallel b-sheet when it binds

to DPC micelles.

Keywords NMR � Structure � Protegrin � Antimicrobial

peptide � DPC micelle

Introduction

Antimicrobial peptides (AMPs) are small peptides with a

strong antibiotic activity which play an important role in

the immune system of many different animals. AMPs can

provide a rapid response to infection and are often effective

against a broad range of bacterial species (Heller et al.

1998). The monomeric structures of small AMPs can be

classified into several groups based on their amino acid

compositions and structure (Brogden 2005; Friedrich et al.

2000; Jang et al. 2011; Powers and Hancock 2003; Sitaram

and Nagaraj 2002; Steinberg et al. 1997; Zasloff 2002).

One of them adopt an a-helical structure when bound to

lipid membranes, other adopt b-type structures stabilized

by disulfide bonds. These peptides adopt different struc-

tures under different conditions, allowing the conformation

to adjust to the surrounding environment (Jang et al. 2006).

For the disulfide-bonded b-sheet forming peptides, which

includes protegrins, the presence of positively charged

amino acid residues allows their strong interaction with the

lipid matrix of the plasma membrane, as opposed to a

protein target on the surface of the cell. Their interaction

with the membrane results in permeability changes and

may cause cytolysis. An AMPs cytotoxicity primarily takes

place by incorporation into the membrane, ultimately dis-

rupting its structure either by formation of pores or via
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alteration of the bilayer fluidity (Brogden 2005; Gottler

et al. 2008; Jang et al. 2011, 2008; Lam et al. 2006;

Matsuzaki 1999; Shai 1999; Sokolov et al. 1999; Yang

et al. 2000; Zasloff 2002).

Protegrins are one of the best characterized b-sheet

cytolytic peptides. These small b-sheet AMPs found in

porcine leukocytes (Aumelas et al. 1996; Cho et al. 1998;

Fahrner et al. 1996; Kokryakov et al. 1993), are members

of the cathelicidin family (Zhao et al. 1995, 1994), a large

group of structurally diverse AMPs whose precursors

contain a highly conserved cathelin domain (Zanetti et al.

1995). There are five known protegrins (PG-1–PG-5). The

solution structure of PG-1 (PDB: 1PG1) was established by

2D NMR spectroscopy (Fahrner et al. 1996; Mani et al.

2006) and its form the b-hairpin conformation, which is

composed of 18 amino acids (RGGRL-CYCRR-RFCVC-

VGR) with a high content of cysteine (Cys) and positively

charged arginine (Arg) residues. Six arginine residues

allow PG-1 to interact with surfaces of lipid bilayers

composed of negatively charged headgroups via strong

electrostatic interactions.

The interaction of protegrin with the membrane depends

on its lipid composition: for negatively charged anionic

lipids PG-1 inserts into a membrane composed and sig-

nificantly less into a membrane composed of neutrally

charged lipids (Gidalevitz et al. 2003; Jang et al. 2006). It

was shown that the b-forming PG-1 peptide exhibits

amyloid-like ion channel behaviour in model lipid bilayers

(Gottler et al. 2008; Jang et al. 2011; Sokolov et al. 1999;

Yang et al. 2000) and PG-1 and Ab share a common cel-

lular mechanism, such as membrane disruption and pore

formation, preceded by toxic ion channel formation, lead-

ing to cell death (Jang et al. 2011). PG-1 adopts a dimeric

structure (PDB: 1ZY6) in dodecylphosphocholine (DPC)

micelles (Aumelas et al. 1996), and a channel is formed by

the association of several dimers but the molecular mech-

anisms of the membrane damage by non-a-helical peptides

are still unknown (Bechinger 2000). It was shown that the

PG-1 dimer interface of the antiparallel b-sheets in micelle

environments is more stable than the parallel b-sheets and

that the parallel b-sheets interact with the lipids with the b-

sheet plane lying obliquely to the bilayer surface,

increasing the surface pressure in the initial insertion into

the lipid bilayer (Jang et al. 2007). The parallel PG-1 dimer

was biologically more active to insert into the POPC lipid

bilayer. The formation of the PG-1 dimer is important for

pore formation in the lipid bilayer, since the dimer can be

regarded as the primary unit for assembly into the ordered

aggregates (Jang et al. 2007).

Study of activity of protegrins against Yeast-Phase

Candida albicans shows that the protegrins PG-2, -3, and -

5, but not PG-4, were as effective as PG-1 (Cho et al.

1998). These studies suggest that only 12 residues are

needed to endow protegrin molecules with strong anti-

bacterial activity and that at least 4 additional residues are

needed to add potent antifungal properties. Thus, the

16-residue protegrin PG-2 likely represents the minimal

structure needed for broad-spectrum antimicrobial activity

encompassing bacteria and fungi (Cho et al. 1998). As the

peptide conformation and peptide-to-membrane binding

properties are very sensitive to single amino acid substi-

tutions (Usachev et al. 2014), the solution structure of PG-

2, -3, -4, and-5 in solution and in a membrane mimicking

environment are crucial. In order to find evidence if the

oligomerization state of PG-1 in a lipid environment will

be the same for another protegrins, we investigate in the

present work the PG-2 NMR solution structure in the

presence of perdeuterated DPC micelles which is a com-

monly used zwitterionic detergent for the solubilization of

membrane peptides and proteins (McDonnell and Opella

1993; Roumestand et al. 1998). Here we should mentioned

that even though solution NMR experiments on DPC

micelles provide high-resolution structures, the structural

results obtained from a detergent micelle need to be sub-

stantiated by studies in lipid bilayers, which do not have a

curved surface and are a better approximation to cell

membranes. Contrariwise for some AMPs such as magai-

nins MSI-594 and MSI-78 was observed that the formation

of antiparallel dimers and magainin aggregation is driven

by the primary sequence rather than the membrane mim-

icking system (i.e., detergent micelles vs. lipid vesicles)

(Porcelli et al. 2006). Also the solution NMR in micelles

offers as compared to the vesicles the higher sensitivity.

Materials and methods

Sample preparation

The PG-2 peptides were synthesized by Dr. Andrey Filip-

pov in Chemistry of Interfaces laboratory at the Luleå

University of Technology. Peptides were synthesized by

solid-phase peptide synthesis, using amino acids protected

by the 9-fluorenylmethoxycarbonyl group and with reac-

tion mixture conductivity control. Fmoc-protected amino

acids of ‘‘peptide synthesis’’ grade were purchased from

Applied Biosystems, Foster City, CA, USA. Peptide syn-

thesis was done using the 0.1 mmol automated fast Fmoc

solid phase procedure using HBTU (H-benzotriazole-1-yl-

tetramethyluranium hexafluorophosphate) activation. The

procedure was performed on an ABI 433A peptide syn-

thesizer (Applied Biosystems) at 293 K. Cleavage from the

resin and separation of the peptide substrate and the pro-

tecting groups was carried out in a solution of phenol,

ethanedithiol and thioanisole in 95 % trifluoroacetic acid,

followed by precipitation of the peptide in cold tert-butyl
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methyl ether (tBME). The peptide was purified using the

high-performance liquid chromatography instrument Series

200 Perkin–Elmer HPLC System (Waltham, MA, USA). A

semipreparative Vydac 259VH810 reverse phase column

was used at 328 K, with a water-acetonitrile linear gradient

with 0.1 % trifluoroacetic acid (TFA) and flow rate of

4 mL/min. The quality of the final product was character-

ized using electrospray mass spectrometry. The purity of

the peptide was estimated as better than 95 %. The sample

was lyophilized and stored at a temperature of 193 K

before use.

The NMR samples of PG-2 were prepared as previously

described for PG-1 (Roumestand et al. 1998). The peptide

(4 mg) was solubilized in an aqueous solution (H2O or
2H2O, 500 lL) containing 20 mg perdeuterated DPC (molar

ratio * 1:12). 3-(trimethylsilyl)-propionic-2,2,3,3-2H4 acid

(TMSP-2,2,3,3-2H4) (98 % atom 2H, Aldrich) was added as

an internal chemical shift standard for 1H NMR spectros-

copy. Perdeuterated d38 DPC (98 % 2H) and TSP-d4 were

purchased from Aldrich.

NMR spectroscopy and spatial structure calculation

All data were acquired at 500 MHz (Bruker Avance II)

NMR spectrometer at a probe temperature 293 K. The

proton chemical shifts were referred to the TMSP-

2,2,3,3-2H4. 2D NOESY, TOCSY and DIPSY experiments

were reordered in the phase-sensitive state-TPPI mode. The

spin-lock time of the TOCSY and DIPSI was 60, 100 and

130 ms. Solvent suppression was carried out using the ‘‘3-

9-19’’ pulse sequence with gradients using flip-back pulse

in NOESY experiments (Lippens et al. 1995; Piotto et al.

1992; Sklenar et al. 1993); using excitation sculpting with

gradients in DIPSI experiments (Hwang and Shaka 1995;

Shaka et al. 1988) and using watergate W5 pulse sequence

with gradients in TOCSY experiments (Bax and Davis

1985; Liu et al. 1998). NOESY data were collected with a

mixing time of 200, 300 and 500 ms to derive 1H–1H

distance constraints. A total of 32 (TOCSY and DIPSI) or

64 (NOESY) transient were acquired. All 2D spectra were

recorded with 512 9 4,096 data points and with a spectral

width of 6,000 Hz.

Spectra were processed by NMRPipe (Delaglio et al.

1995) and analyzed using SPARKY. Sequence-specific

backbone resonance assignments and side-chain assign-

ments for all residues were obtained using a combination of

2D TOCSY, DIPSI and NOESY experiments.

Inter-proton distances obtained from analysis of inten-

sities of cross-peaks from NMR NOESY spectra were used

as the primary data for the calculations by the molecular

dynamics method. Following structural calculations, the

ensemble of structures was subjected to restrained molec-

ular dynamics using the Xplor-NIH (Schwieters et al.

2003). A total of 1,000 structures were calculated and 20

with minimal energy were chosen. None of the 20 struc-

tures had any violated NOE distances. Individual structures

were minimized, heated to 1,000 K for 6,000 steps, cooled

in 100 K increments to 50 K, each with 3,000 steps, and

finally minimized with 1,000 steps of the steepest descent,

followed by 1,000 steps of conjugate gradient minimiza-

tion. Starting with a family of 1,000 structures, approxi-

mately 200 were subjected to subsequent molecular

dynamics calculations and, finally, the 20 lowest energy

structures were retained. Ramachandran plot and structure

validation was made with MolProbity (Chen et al. 2010;

Davis et al. 2007). The most probable structure of the

‘‘peptide-micelle’’ complex was determined by binding the

hydrophobic area of the peptide on the charged micelle

surface. The PG-2 peptide structures were visualized with

MOLMOL (Koradi et al. 1996) and CHIMERA (Pettersen

et al. 2004).

Results and discussion

Chemical shift assignments of PG-2 in DPC micelles were

obtained using standard methods of protein NMR spec-

troscopy by 2D NMR 1H–1H TOCSY and NOESY

experiments (Table 1). Chemical shifts were deposited in

the BioMagResBank (BMRB ID 25212). Figure 1 shows

the 1H–1H NMR NOESY spectra of PG-2 at 293 K in H2O

solution and in the presence of DPC at a detergent/protein

Table 1 Proton chemical shifts in ppm measured in water for PG-2

in the presence of perdeuterated DPC micelles (detergent/peptide

molar ratio *12) at 293 K

Residue Chemical shift (ppm)

NH a b c d e

R1 – 4.08 1.92 1.67 3.19 7.40

G2 8.95 4.00 – – – –

G3 8.33 3.86 – – – –

R4 8.28 4.38 1.74 1.60 3.11 7.27

L5 8.48 4.55 1.74 1.58 0.90 –

C6 8.30 5.70 2.85, 2.66 – – –

Y7 8.19 4.67 2.84 – 7.00 6.69

C8 9.15 5.69 2.86, 2.66 – – –

R9 9.23 4.35 1.85 1.61 3.30 7.76

R10 9.24 3.77 2.05 1.66 3.28 7.61

R11 8.12 3.97 2.03, 1.86 1.37 3.10 7.26

F12 8.48 3.86 2.94, 2.68 – – –

C13 8.81 5.67 2.95, 2.69 – – –

V14 8.95 4.38 2.04 1.01 – –

C15 8.86 5.57 2.86, 2.66 – – –

V16 8.81 4.34 2.24 0.95 – –
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ratio of *12. Chemical shift deviation relative to random

coil values (Wishart et al. 1992) of PG-2 in the presence of

DPC were found to be the similar with PG-1 (Fig. 2)

(Roumestand et al. 1998). Two ‘‘dense’’ group of three or

more downfield shifts indicate on the presence of b-strand

structure. Furthermore the presence of dNN(i,i?1) and

daN(i,i?1) medium range NOE connectivities (Fig. 2) in 2D

NOESY NMR spectra of PG-2 in DPC micelles also is an

indication of partially folded structure suggest that the PG-

2 adopts a b-hairpin in the regions of 6–9 and 12–15 res-

idues. A total of 174 interproton NOE distance constraints

were determined for the structural calculations (see

Table 2). Numerous medium-range NOE connectivities

allowed us to construct the 3D structure of PG-2 in the

presence of DPC micelles by molecular dynamics method

calculations of the Xplor-NIH program (Schwieters et al.

2003). The 20 lowest-energy structures of PG-2 were used

for the final analysis. The final NMR ensemble of 20

structures has been deposited in the Protein Data Bank

(PDB: 2MUH). Ramachandran analysis for 20 structures of

PG-2 in the precence of DPC micelles shown in Fig. 3.

78.6 % of all residues were in favored (98 %) regions and

100.0 % of all residues were in allowed ([99.8 %) regions.

Stereo views of a superposition of this family of struc-

tures are shown in Fig. 4. Most of the structure is well

defined with a an overall backbone root mean squared

deviation (RMSD) of 1.33 Å. As expected from the

chemical shift deviations and NOE crosspeak patterns, PG-

2 forms an anti-parallel b sheet from residues 6–9 and

12–15. Likewise for the PG-1 we observed that for PG-2

the sidechains of Leu5, Phe12, Val14 and Val16 forms a

relatively well ordered apolar cluster (Aumelas et al. 1996;

Fahrner et al. 1996) (Fig. 4). Based on these data we
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Fig. 1 Fingerprint NH-Ha region of a 2D NMR 1H–1H NOESY

spectrum acquired at 500 MHz of PG-2 in a solution of H2O ? D2O

with DPC micelles. Mixing time tm = 0.15 s
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Fig. 2 Summary of the

chemical shift deviations of a-

proton resonances relative to

random coil values in water

(Wishart et al. 1992) and NOE

connectivity. Open bars are for

PG-2 and filled bars for PG-1

(Roumestand et al. 1998) in the

precence of DPC micelles

(detergent/peptide ratio *2).

The line thickness for the NOE

connectivity is inversely

proportional to the squared

upper distance bound. When an

unambiguous assignment was

not possible due to peak

overlap, the NOEs are drawn

with gray shaded boxes
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hypothesize that PG-2 interact with the DPC micelle by

binding the hydrophobic area of the peptide on the charged

micelle surface (Blochin et al. 2013; Blokhin et al. 2014;

Usachev et al. 2013a, b). These observations also supports

the hypothesis of the requirement of hydrophobic/hydro-

philic cluster proximity to induce cytolytic activity of

protegrins (Aumelas et al. 1996). The final structure of the

PG-2 peptide bound to an SDS micelle is presented in

Fig. 5. Comparing the obtained backbone structure of PG-2

in DPC micelles with solved previously PG-1 structure in

solution (PDB: 1PG1) we could conclude that both struc-

tures are quite similar (Fig. 6). The differences are

observed for residues closed to disulfide bond bonds (Tyr7,

Cys8, Cys13) and in the loop region (Arg9, Arg11, Cys13)

and for the residues of apolar cluster (Leu5, Phe12, Val14

and Val16) the differences in backbone structure were

minimal.

Several studies of the PG-1 and its analogues interaction

with lipid bilayers showed that there are a membrane

thinning effect, ability of pore formation and that PG-1 can

adopt a dimer (Jang et al. 2006, 2007; Khandelia and

Kaznessis 2007; Rodziewicz-Motowidlo et al. 2010; Ro-

umestand et al. 1998). PG-2 is identical to PG-1 except for

its deletion of residues 17 and 18 (Gly-Arg). Was shown

that each region of the PG molecule, with the exception of

Table 2 Structural statistics for the 20 best NMR structures of PG-2

in a solution of H2O ? D2O with DPC micelles

Distance restraints used for structure calculation Total

Interproton restraints 174

Intraresidue 127

Sequential (|i - j| = 1) 28

Medium-range (1 \ |i - j| B 4) 8

Long-range (|i - j| [ 4) 11

General case

-180

1800-180

180

 0

Phi

Psi

Fig. 3 Ramachandran analysis for 20 structures of PG-2 in the

precence of DPC micelles. 78.6 % of all residues were in favored

(98 %) regions and 100.0 % of all residues were in allowed

([99.8 %) regions

Fig. 4 The superposition of 20 minimized structures for the PG-2

(2MUH) in a solution of H2O ? D2O with DPC micelles. Only

backbone atoms shown as sticks at the top and ribbon and

hydrophobicity surface (as transparent mesh) of the PG-2 are shown

at the bottom

Fig. 5 Proposed structure for PG-2 bound to a DPC micelle
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residues 17 and 18, contributed substantially to activity

against C. albicans (Cho et al. 1998). In contrast, only 12

residues (residues 5–16) and their two associated disulfide

bonds sufficed to endow PG-1 with strong antibacterial

properties and, the 16-residue protegrin PG-2 may already

approach the minimal structure that is capable of exerting

strong activity against gram-positive bacteria, gram-nega-

tive bacteria, and fungi in an extracellular environment.

In contrast with PG-1, for PG-2 in the presence of DPC

micelles there were not inconsistent with b-sheet structure

NOEs (Roumestand et al. 1998). For PG-1 in DPC micelles

a strong daa NOE effects observed between residues R18

and F12, V14 and V16. These ‘‘inconsistent’’ NOEs

appears due to formation of an additional antiparallel b-

sheet between two monomers. But in PG-2 sequence there

are no G17 and V18 residues, so only interaction between

V14 and V16 residues is possible. We recorded 2D 1H–1H

NMR NOESY spectra of PG-2 in the presence of DPC

micelles in 2H2O and didn’t observe a daa NOE effect

between V14 and V16. Partially this may be due to the

close values of the V14 and V16 CHa chemical shifts.

Nevertheless the dimeric structure by PG-2 in a lipid

environment can take place due to its antimicrobial activity

similarly as for PG-1 or for the human defensin HNP-3

Fig. 6 90-degree-rotated stereo

views of a superposition of PG-

1 (green; PDB: 1PG1) and PG-2

(magneta; PDB: 2MUH)

structures. The differences are

observed for residues closed to

disulfide bond bonds (Tyr7,

Cys8, Cys13) and in the loop

region (Arg9, Arg11, Cys13).

The progression of views rotates

90� about a horizontal axis (for

the color interpretation the

reader is referred to the web

version of this paper)
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(Hill et al. 1991). This this assumption can be proved by

other methods for example by Rotational-Echo Double-

Resonance Solid-State NMR as it was shown for PG-1

(Mani et al. 2006).

Conclusion

In this article, we report the conformation of the PG-2

antimicrobial peptide in the presence of DPC micelles

studied by 2D NMR spectroscopy. The NMR study

reported in the present work indicates that PG-2 form a

well-defined structure (2MUH) composed of a two-stran-

ded antiparallel b-sheet when it binds to DPC micelles.

Likewise for the PG-1 we observed that for PG-2 the

sidechains of Leu5, Phe12, Val14 and Val16 forms a rel-

atively well ordered apolar cluster and based on these data

we hypothesize that PG-2 interact with the DPC micelle by

binding the hydrophobic area of the peptide on the charged

micelle surface. In contrast with PG-1, for PG-2 in pre-

sence of DPC micelles, no intramolecular NOEs were

observed. Partially this may be due to the close values of

the V14 and V16 CHa chemical shifts. Nevertheless the

dimeric structure by PG-2 in a lipid environment can take

place due to its antimicrobial activity similarly as for PG-1

or for the human defensin HNP-3. However, this hypoth-

esis requires more experimental studies.
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